Whole Genome Sequencing Reveals Recurrent Structural Driver Events in Peripheral T-Cell Lymphomas Not Otherwise Specified

Historically, the differential diagnosis between different nodal peripheral T-cell lymphoma (PTCL) subtypes based on morphological and phenotypic grounds has posed great challenges. In the last few years, our knowledge of the molecular bases of different PTCLs has significantly expanded. However, pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2018-11, Vol.132 (Supplement 1), p.4115-4115
Hauptverfasser: Maura, Francesco, Bolli, Niccolò, Leongamornlert, Daniel, Carniti, Cristiana, Dodero, Anna, Abascal, Federico, Testi, Adele, Rodriguez-Martin, Bernardo, Pellegrinelli, Alessio, Biancon, Giulia, Magni, Martina, Chiappella, Annalisa, Martincorena, Inigo, Tubio, Jose M.C., Pruneri, Giancarlo, Campbell, Peter J., Corradini, Paolo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Historically, the differential diagnosis between different nodal peripheral T-cell lymphoma (PTCL) subtypes based on morphological and phenotypic grounds has posed great challenges. In the last few years, our knowledge of the molecular bases of different PTCLs has significantly expanded. However, peripheral T-cell lymphomas not otherwise specified (PTCL-NOSs) are still regarded to as a heterogeneous category encompassing PTCL cases not fitting other, more homogeneous, subtypes. In fact, PTCL-NOS is one of the few lymphoma subtypes where no recurrent driver mutations have been reported so far. In order to better characterized the PTCL-NOS genomic landscape, we decided to investigate 11 PTCL-NOS patients by a whole genome sequencing (WGS) approach (median coverage 27X). Ten out of eleven samples were collected from FFPE blocks and 2 were removed from analysis: one due to low cancer cell fraction (CCF) and the other based on cluster generation issues during sequencing likely caused by a hyper-fragmented DNA. Among the remaining 9 cases, we extracted 59,617 somatic base substitutions (range 2,471-10,756, median 6,358 per patient) and 20,531 small insertion-deletions (indels) (range 84-6,397, median 1,580). We were able to characterize the spectrum of FFPE-induced artefacts, mostly composed of point mutations and indels within LINE-1 (L1) elements, predominantly of the L1PA family. This is a crucial quality control step that could be applied to similar future studies from archive samples. Four samples were heavily involved by FFPE-related artefacts and were excluded for this reason. Using a non-negative matrix factorization (NNMF) algorithm we investigated for the first time the PTCL-NOS mutational signature landscape. We did not find novel processes in this entity, but rather known processes operative in other lymphoid malignancies. Among those: signatures 1 and 5, deriving from the age-related process of spontaneous deamination of methylated cytosines; signatures 2 and 13 deriving from aberrant activity of the APOBEC family of DNA deaminases; signatures 17 and 8, pertaining to two yet poorly characterized processes. The contribution of different processes to the mutational spectrum of each case was profoundly heterogeneous. Combining our data set with 64 previously published whole exome sequencing cases (23 ALCL, 15 AITLs, 9 PTCL-NOSs and 16 EATL-II), we confirmed the lack of recurrent driver mutations among PTCL-NOS. Taking advantage of WGS data, we therefor
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2018-99-112094