HIV-1 transactivator protein induction of suppressor of cytokine signaling-2 contributes to dysregulation of IFNγ signaling
HIV infection remains a worldwide threat. HIV-1 transactivator protein Tat is one of the retroviral proteins identified as a key immunomodulator in AIDS pathogenesis. Although the primary function of Tat is to regulate HIV-1 replication in the infected cell, it also dysregulates cytokine production...
Gespeichert in:
Veröffentlicht in: | Blood 2009-05, Vol.113 (21), p.5192-5201 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | HIV infection remains a worldwide threat. HIV-1 transactivator protein Tat is one of the retroviral proteins identified as a key immunomodulator in AIDS pathogenesis. Although the primary function of Tat is to regulate HIV-1 replication in the infected cell, it also dysregulates cytokine production resulting in perturbation of the host immune response and enhancement of the retrovirus survival. Because interferon-γ (IFNγ) is a pleiotropic cytokine with potent antiviral and immunoregulatory effects, we investigated whether Tat interferes with the IFNγ signal transduction in primary monocytes. We demonstrated that Tat impaired the IFNγ-receptor signaling pathway at the level of STAT1 activation, possibly via Tat-dependent induction of suppressor of cytokine signaling-2 (SOCS-2) activity. We delineated the inhibitory role of SOCS-2 in IFNγ signaling pathway by overexpression of exogenous SOCS-2 in HEK293 cell. The results showed that SOCS-2 suppressed the IFNγ-activated STAT1 phosphorylation and consequent IFNγ-regulated transcription of specific genes. To confirm the role of SOCS2 in the Tat-induced process, we demonstrated that SOCS-2 siRNA in human blood monocytes abrogated the Tat-dependent inhibition of IFNγ signaling. Our data suggested a possible mechanism implicating the role of SOCS-2 in mediating HIV-1–induced immune evasion and dysregulation of IFNγ signaling in primary human monocytes. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2008-10-183525 |