Substitution of the γ-chain Asn308 disturbs the D:D interface affecting fibrin polymerization, fibrinopeptide B release, and FXIIIa-catalyzed cross-linking
Crystallographic structures indicate that γ-chain residue Asn308 participates in D:D interactions and indeed substitutions of γAsn308 with lysine or isoleucine have been identified in dysfibrinogens with impaired polymerization. To probe the role of Asn308 in polymerization, we synthesized 3 variant...
Gespeichert in:
Veröffentlicht in: | Blood 2004-06, Vol.103 (11), p.4157-4163 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Crystallographic structures indicate that γ-chain residue Asn308 participates in D:D interactions and indeed substitutions of γAsn308 with lysine or isoleucine have been identified in dysfibrinogens with impaired polymerization. To probe the role of Asn308 in polymerization, we synthesized 3 variant fibrinogens: γAsn308 changed to lysine (γN308K), isoleucine (γN308I), and alanine (γN308A). We measured thrombin-catalyzed polymerization by turbidity, fibrinopeptide release by high-performance liquid chromatography, and factor XIIIa–catalyzed cross-linking by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. In the absence of added calcium, polymerization was clearly impaired with all 3 variants. In contrast, at 0.1 mM calcium, only polymerization of γN308K remained markedly abnormal. The release of thrombin-catalyzed fibrinopeptide B (FpB) was delayed in the absence of calcium, whereas at 1 mM calcium FpB release was delayed only with γN308K. Factor XIIIa–catalyzed γ-γ dimer formation was delayed with fibrinogen (in absence of thrombin), whereas with fibrin (in presence of thrombin) γ-γ dimer formation of only γN308K was delayed. These data corroborate the recognized link between FpB release and polymerization. They show fibrin cross-link formation likely depends on the structure of protofibrils. Together, our results show substitution of Asn308 with a hydrophobic residue altered neither polymer formation nor polymer structure at physiologic calcium concentrations, whereas substitution with lysine altered both. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2003-12-4296 |