CD8αα memory effector T cells descend directly from clonally expanded CD8α+βhigh TCRαβ T cells in vivo

Whereas most peripheral CD8+ αβ T cells highly express CD8αβ heterodimer in healthy individuals, there is an increase of CD8α+βlow or CD8αα αβ T cells in HIV infection or Wiskott-Aldrich syndrome and after bone marrow transplantation. The significance of these uncommon cell populations is not well u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2002-12, Vol.100 (12), p.4090-4097
Hauptverfasser: Konno, Akihiro, Okada, Kanae, Mizuno, Kazunori, Nishida, Mika, Nagaoki, Shuya, Toma, Tomoko, Uehara, Takahiro, Ohta, Kazuhide, Kasahara, Yoshihito, Seki, Hidetoshi, Yachie, Akihiro, Koizumi, Shoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whereas most peripheral CD8+ αβ T cells highly express CD8αβ heterodimer in healthy individuals, there is an increase of CD8α+βlow or CD8αα αβ T cells in HIV infection or Wiskott-Aldrich syndrome and after bone marrow transplantation. The significance of these uncommon cell populations is not well understood. There has been some question as to whether these subsets and CD8α+βhigh cells belong to different ontogenic lineages or whether a fraction of CD8α+βhigh cells have down-regulated CD8β chain. Here we assessed clonality of CD8αα and CD8α+βlow αβ T cells as well as their phenotypic and functional characteristics. Deduced from surface antigens, cytotoxic granule constituents, and cytokine production, CD8α+βlow cells are exclusively composed of effector memory cells. CD8αα cells comprise effector memory cells and terminally differentiated CD45RO−CCR7−memory cells. T-cell receptor (TCR) Vβ complementarity-determining region 3 (CDR3) spectratyping analysis and subsequent sequencing of CDR3 cDNA clones revealed polyclonality of CD8α+βhigh cells and oligoclonality of CD8α+βlow and CD8αα cells. Importantly, some expanded clones within CD8αα cells were also identified within CD8α+βhigh and CD8α+βlow subpopulations. Furthermore, signal-joint TCR rearrangement excision circles concentration was reduced with the loss of CD8β expression. These results indicated that some specific CD8α+βhigh αβ T cells expand clonally, differentiate, and simultaneously down-regulate CD8β chain possibly by an antigen-driven mechanism. Provided that antigenic stimulation directly influences the emergence of CD8αα αβ T cells, these cells, which have been previously regarded as of extrathymic origin, may present new insights into the mechanisms of autoimmune diseases and immunodeficiencies, and also serve as a useful biomarker to evaluate the disease activities.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2002-04-1136