Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island carbonatite, Malawi

Carbonatites are enriched in critical raw materials such as the rare-earth elements (REE), niobium, fluorspar and phosphate. A better understanding of their fluid regimes will improve our knowledge of how to target and exploit economic deposits. This study shows that multiple fluid phases penetrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogical magazine 2017-12, Vol.81 (6), p.1367-1395
Hauptverfasser: Dowman, Emma, Wall, Frances, Treloar, Peter J, Rankin, Andrew H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbonatites are enriched in critical raw materials such as the rare-earth elements (REE), niobium, fluorspar and phosphate. A better understanding of their fluid regimes will improve our knowledge of how to target and exploit economic deposits. This study shows that multiple fluid phases penetrated the surrounding fenite aureole during carbonatite emplacement at Chilwa Island, Malawi. The first alkaline fluids formed the main fenite assemblage and later microscopic vein networks contain the minerals of potential economic interest such as pyrochlore in high-grade fenite and rare-earth minerals throughout the aureole. Seventeen samples of fenite rock from the metasomatic aureole around the Chilwa Island carbonatite complex were chosen for study. In addition to the main fenite assemblage of feldspar and aegirine ± arfvedsonite, riebeckite and richterite, the fenite contains micro-mineral assemblages including apatite, ilmenite, rutile, magnetite, zircon, rare-earth minerals and pyrochlore in vein networks. Petrography using a scanning electron microscope in energy-dispersive spectroscopy mode showed that the rare-earth minerals (monazite, bastnasite and parisite) formed later than the fenite feldspar, aegirine and apatite and provide evidence of REE mobility into all grades of fenite. Fenite apatite has a distinct negative Eu anomaly (determined by laser ablation inductively coupled plasma mass spectrometry) that is rare in carbonatite-associated rocks and interpreted as related to pre-crystallization of plagioclase and co-crystallization with K-feldspar in the fenite. The fenite minerals have consistently higher mid REE/light REE ratios (La/Sm ∼ 1.3 monazite, ∼ 1.9 bastnasite, ∼ 1.2 parisite) than their counterparts in the carbonatites (La/Sm ∼ 2.5 monazite, ∼ 4.2 bastnasite, ∼ 3.4 parisite). Quartz in the low- and medium-grade fenite hosts fluid inclusions, typically a few micrometres in diameter, secondary and extremely heterogeneous. Single phase, 2- and 3-phase, single solid and multi solid-bearing examples are present, with 2-phase the most abundant. Calcite, nahcolite, burbankite and baryte were found in the inclusions. Decrepitation of inclusions occurred at ∼200°C before homogenization but melting-temperature data indicate that the inclusions contain relatively pure CO2 A minimum salinity of ∼24 wt.% NaCl equivalent was determined. Among the trace elements in whole-rock analyses, enrichment in Ba, Mo, Nb, Pb, Sr, Th and Y and depletion in Co, Hf and
ISSN:0026-461X
1471-8022
DOI:10.1180/minmag.2017.081.007