A computational intelligence approach for solar photovoltaic power generation forecasting

This article describes an approach applying computational intelligence methods for the problem of forecasting solar photovoltaic power generation at country level. Precise forecast of power generation plays a vital role in designing a dependable photovoltaic power generation system. The computed pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable Energies 2024-01, Vol.2 (1)
Hauptverfasser: Nesmachnow, Sergio, Risso, Claudio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article describes an approach applying computational intelligence methods for the problem of forecasting solar photovoltaic power generation at country level. Precise forecast of power generation plays a vital role in designing a dependable photovoltaic power generation system. The computed predictions enable the implementation of efficient planning, management, and distribution strategies for the generated power, ultimately enhancing the performance and efficiency of the system. The study analyzes and compares artificial neural network approaches for a specific case study using real solar photovoltaic power generation data from Uruguay in the period 2018 to 2022. Several artificial neural network architectures are evaluated for forecasting. The main results indicate that the approach applying a combination of Encoder-Decoder and Long Short Term Memory artificial neural networks is the most effective method for the addressed forecasting problem. The approach yielded promising results, with an average mean error value of 0.09, improving over the other artificial neural network architectures. Even better results were obtained for sunny days. The generated forecasts hold significant value for its application in planning and scheduling processes, aiming to enhance the overall quality of service of the electricity grid.
ISSN:2753-3735
2753-3735
DOI:10.1177/27533735241237990