Bioelectronic Measurement of Target Engagement to a Membrane-Bound Transporter
The ability to detect and characterize drug binding to a target protein is of high priority in drug discovery research. However, there are inherent challenges when the target of interest is an integral membrane protein (IMP). Assuming successful purification of the IMP, traditional approaches for me...
Gespeichert in:
Veröffentlicht in: | SLAS discovery 2021-09, Vol.26 (8), p.1004-1013 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to detect and characterize drug binding to a target protein is of high priority in drug discovery research. However, there are inherent challenges when the target of interest is an integral membrane protein (IMP). Assuming successful purification of the IMP, traditional approaches for measuring binding such as surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) have been proven valuable. However, the mass dependence of SPR signals may preclude the detection of binding events when the ligand has a significantly smaller mass than the target protein. In FRET-based experiments, protein labeling through modification may inadvertently alter protein dynamics. Graphene Bio-Electronic Sensing Technology (GBEST) aims to overcome these challenges. Label-free characterization takes place in a microfluidic chamber wherein a fluid lipid membrane is reconstituted directly above the GBEST sensor surface. By leveraging the high conductivity, sensitivity, and electrical properties of monolayer graphene, minute changes in electrostatic charges arising from the binding and unbinding of a ligand to a native IMP target can be detected in real time and in a mass-independent manner. Using crude membrane fractions prepared from cells overexpressing monocarboxylate transporter 1 (MCT1), we demonstrate the ability to (1) form a fluid lipid bilayer enriched with MCT1 directly on top of the GBEST sensor and (2) obtain kinetic binding data for an anti-MCT1 antibody. Further development of this novel technology will enable characterization of target engagement by both low- and high-molecular-weight drug candidates to native IMP targets in a physiologically relevant membrane environment. |
---|---|
ISSN: | 2472-5552 2472-5560 |
DOI: | 10.1177/24725552211013067 |