Development of a Bioluminescent High-Throughput Screening Assay for Nicotinamide Mononucleotide Adenylyltransferase (NMNAT)

Nicotinamide mononucleotide adenylyltransferase (NMNAT; EC 2.7.7.1) catalyzes the reversible production of NAD+ from NMN+ and ATP and is a potential drug target for cancer and neurodegenerative diseases. A sensitive bioluminescent assay format suitable to high-throughput screening (HTS) and mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2020-01, Vol.25 (1), p.33-42
Hauptverfasser: Haubrich, Brad A., Ramesha, Chakk, Swinney, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nicotinamide mononucleotide adenylyltransferase (NMNAT; EC 2.7.7.1) catalyzes the reversible production of NAD+ from NMN+ and ATP and is a potential drug target for cancer and neurodegenerative diseases. A sensitive bioluminescent assay format suitable to high-throughput screening (HTS) and mechanistic follow-up has not been reported and is of value to identify new modulators of NMNATs. To this end, we report the development of a bioluminescent assay using Photinus pyralis ATP-dependent luciferase and luciferin for NMNAT1 in a 384-well plate format. We also report a mechanistic follow-up paradigm using this format to determine time dependence and competition with substrates. The assay and follow-up paradigm were used to screen 912 compounds from the National Cancer Institute (NCI) Mechanistic Diversity Set II and the Approved Oncology Set VI against NMNAT1. Twenty inhibitors with greater than 35% inhibition at 20 µM were identified. The follow-up studies showed that seven actives were time-dependent inhibitors of NMNAT1. 2,3-Dibromo-1,4-naphthoquinone was the most potent, time-dependent inhibitor with IC50 values of 0.76 and 0.26 µM for inhibition of the forward and reverse reactions of the enzyme, respectively, and was shown to be NMN and ATP competitive. The bioluminescent NMNAT assay and mechanistic-follow-up will be of use to identify new modulators of NAD biosynthesis.
ISSN:2472-5552
2472-5560
DOI:10.1177/2472555219879644