Chaotic vibrations of carbon nanotubes subjected to a traversing force considering nonlocal elasticity theory
The existence of chaos in the lateral vibration of the carbon nanotube (CNT) can contribute to source of instability and inaccuracy within the nano mechanical systems. So, chaotic vibrations of a simply supported CNT which is subjected to a traversing harmonic force are studied in this paper. The mo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part N, Journal of nanomaterials, nanoengineering and nanosystems Journal of nanomaterials, nanoengineering and nanosystems, 2022-03, Vol.236 (1-2), p.31-40 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The existence of chaos in the lateral vibration of the carbon nanotube (CNT) can contribute to source of instability and inaccuracy within the nano mechanical systems. So, chaotic vibrations of a simply supported CNT which is subjected to a traversing harmonic force are studied in this paper. The model of the system is formulated by using nonlocal Euler–Bernoulli beam theory. The equation of motion is solved using the Rung–Kutta method. The effects of the nonlocal parameter, velocity and amplitude of the traversing harmonic force on the nonlinear dynamic response of the system are analyzed by the bifurcation diagrams, phase plane portrait, power spectra analysis, Poincaré map and the maximum Lyapunov exponent. The results indicate that the nonlocal parameter, velocity and amplitude of the traversing harmonic force have considerable effects on the bifurcation behavior and can be used as effective control parameters for avoiding chaos. |
---|---|
ISSN: | 2397-7914 2397-7922 |
DOI: | 10.1177/23977914211063309 |