Investigating electromagnetic shielding effectiveness of knitted fabrics made by barium titanate/polyester bicomponent yarn
Electromagnetic pollution is a problem that damages all creatures and electronic devices. Most of the electronic devices we use at homes emit electromagnetic radiation. Conductive textile surfaces are used for electromagnetic shielding applications. However, to provide electromagnetic shielding, the...
Gespeichert in:
Veröffentlicht in: | Journal of engineered fibers and fabrics 2019-03, Vol.14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electromagnetic pollution is a problem that damages all creatures and electronic devices. Most of the electronic devices we use at homes emit electromagnetic radiation. Conductive textile surfaces are used for electromagnetic shielding applications. However, to provide electromagnetic shielding, there has not been any study on the bicomponent fiber production with barium titanate. For this purpose, in this study, bicomponent yarns were produced using three different adding ratios of barium titanate. The mechanical and electrical properties of the yarns were investigated. Knitted fabrics were produced from bicomponent yarns with two different fabric densities using a circular knitting machine. The effects of the additive ratio and the fabric density on the effectiveness of the electromagnetic shielding were also investigated. The fabric with the highest content of the barium titanate and greater fabric density showed the highest shielding effectiveness, reaching 25.95 dB at 0.02 GHz. |
---|---|
ISSN: | 1558-9250 1558-9250 |
DOI: | 10.1177/1558925019837806 |