Poly(butylene succinate) fibrous dressings containing natural antimicrobial agents

Poly(butylene succinate) (PBSU) is a biodegradable and biocompatible synthetic aliphatic polyester, which has been used extensively in packaging, catering and agriculture, and more recently in drug delivery and bone and cartilage repair. PBSU-based mats created by electrospinning show promise as wou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial textiles 2022-06, Vol.51 (4_suppl), p.6948S-6967S
Hauptverfasser: Aliko, Kinana, Aldakhlalla, Mohamad Basel, Leslie, Laura J, Worthington, Tony, Topham, Paul D, Theodosiou, Eirini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(butylene succinate) (PBSU) is a biodegradable and biocompatible synthetic aliphatic polyester, which has been used extensively in packaging, catering and agriculture, and more recently in drug delivery and bone and cartilage repair. PBSU-based mats created by electrospinning show promise as wound dressing materials because of their good mechanical properties, high surface area-to-volume ratio and increased levels of porosity. In this work, we present the creation of antimicrobial PBSU fibrous mats through the incorporation of natural food grade agents via blend electrospinning. Three types of edible gums (namely arabic, karaya and tragacanth), two essential oils (coriander and lavender), and one free fatty acid (linoleic acid) were added to PBSU containing a chain extender and their effect on six clinically relevant pathogens was evaluated. Mats containing essential oils at the highest concentration studied (7% w/v) showed some antimicrobial behaviour against S. aureus, E. hirae and P. aeruginosa, whereas the incorporation of linoleic acid at both concentrations tested (3% and 5% w/v) gave a strong reaction against S. pyogenes. Gum arabic was the only gum that had a considerable impact on S. aureus. Furthermore, the three gums enhanced the mechanical properties of the polymer mats and brought them closer to those of the human skin, whilst all agents maintained the high biocompatibility of the PBSU mats when contacted with mouse fibroblasts. This work, for the first time, shows the great promise of PBSU blended fibres as a skin substitute and paves the way towards bioactive and cost effective wound dressings from renewable materials.
ISSN:1528-0837
1530-8057
DOI:10.1177/1528083720987209