Axial fan tip clearance noise: Experiments, Lattice–Boltzmann simulation, and mitigation measures

The effect of tip clearance in an axial fan on its aerodynamic and aeroacoustic performance is investigated experimentally as well as via a Lattice–Boltzmann flow simulation method. An increase in tip clearance degrades fan pressure rise and efficiency, but also increases significantly the overall s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of aeroacoustics 2018-03, Vol.17 (1-2), p.159-183
Hauptverfasser: Zhu, Tao, Carolus, Thomas H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of tip clearance in an axial fan on its aerodynamic and aeroacoustic performance is investigated experimentally as well as via a Lattice–Boltzmann flow simulation method. An increase in tip clearance degrades fan pressure rise and efficiency, but also increases significantly the overall sound power emitted by the fan. A large tip clearance causes a clear structure of well distinguishable unsteady vortices which interact with neighboring blades and hence produce an increase in broadband sound. Moreover, if, compared to the design flow rate, there is a moderate flow rate reduction, the local tip vortex systems of all individual blade tips form a circumferentially coherent flow structure, resulting in distinct humps of sound pressure in the acoustic far field. By means of a rigid ring-type protrusion fixed to the inner casing wall, the generation of the tip clearance vortices and slowly rotating coherent flow structures could be suppressed. As a consequence, the sound emitted by the fan is substantially reduced.
ISSN:1475-472X
2048-4003
DOI:10.1177/1475472X17743627