Performance investigation on the ventilation systems of high-speed railway train depots in hot summer regions

As a place for the maintenance of high-speed trains, the current ventilation system in the train depot cannot meet comfort requirements according to the feedback from the inspection department. The poor thermal environment could seriously affect the physical health and work efficiency of staff. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor + built environment 2024-06, Vol.33 (5), p.787-807
Hauptverfasser: Yu, Jinghua, She, Yexing, Zou, Lei, Song, Yi, Zhao, Jingang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a place for the maintenance of high-speed trains, the current ventilation system in the train depot cannot meet comfort requirements according to the feedback from the inspection department. The poor thermal environment could seriously affect the physical health and work efficiency of staff. This study provides some basic data and design methods for improving the thermal environment in high-speed railway depots. Field studies were conducted in five different high-speed railway depots in hot summer regions of China, including the form and the operation of the ventilation system, the thermal and humid environment and the characteristics of the heat sources. According to the survey results, the maximum temperature in the depot can reach 41.2°C in summer. There is a clear vertical temperature stratification in the afternoon of the depot, and the maximum temperature difference between three working platforms can reach more than 4°C. The cooling effect of ventilation systems in depot was investigated and compared. The recommended ventilation mode is natural ventilation system + bottom mechanical air supply system + ceiling fan system, and it is recommended to combine the west window louvers with external sun shading to achieve the best cooling effect in high-speed railway depot.
ISSN:1420-326X
1423-0070
DOI:10.1177/1420326X231219991