Full-field displacement and strain reconstruction for beam structures based on the extended inverse finite element method
The inverse finite element method (iFEM) is a superior shape sensing methodology in the field of structural health monitoring. However, the standard iFEM for beams yields only displacements at iFEM nodes whose spatial resolution is limited by the number of strain measurements. This study presented a...
Gespeichert in:
Veröffentlicht in: | Advances in structural engineering 2023-10, Vol.26 (13), p.2429-2446 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inverse finite element method (iFEM) is a superior shape sensing methodology in the field of structural health monitoring. However, the standard iFEM for beams yields only displacements at iFEM nodes whose spatial resolution is limited by the number of strain measurements. This study presented an extended iFEM that renders high-quality full-field displacement and strain fields by interpolating the displacements and strains at all locations on the beam using elemental shape functions. A series of numerical studies were implemented to verify the extended iFEM algorithm for various sensor and mesh configurations under different boundary and loading conditions. It showed that the extended iFEM gives smoother and more accurate results using far fewer inverse elements than the standard iFEM. |
---|---|
ISSN: | 1369-4332 2048-4011 |
DOI: | 10.1177/13694332231187437 |