Experimental study of light gauge steel framing floor systems under fire conditions

Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such light gauge steel framing floor systems are widely accepted in industrial and commercial building construction. Light gauge steel framing floor systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in structural engineering 2017-03, Vol.20 (3), p.426-445
Hauptverfasser: Baleshan, Balachandren, Mahendran, Mahen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such light gauge steel framing floor systems are widely accepted in industrial and commercial building construction. Light gauge steel framing floor systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Floor assemblies with higher fire resistance rating are needed to develop resilient building systems for extreme fire events. Recently, a new composite panel system based on external insulation has been developed for light gauge steel framing floors to provide higher fire resistance rating under fire conditions. This article presents the details of an experimental investigation of light gauge steel framing floors made of both the conventional (with and without cavity insulation) and the new composite panel systems under standard fires. Analysis of the fire test results showed that the thermal and structural performance of externally insulated light gauge steel framing floor system was superior than conventional light gauge steel framing floors with or without cavity insulation. Details of the experimental results including the temperature and deflection profiles measured during the tests are presented along with the joist failure modes. Such fire performance data can be used in the numerical modelling of light gauge steel framing floor systems to further improve the understanding of their fire behaviour and to develop suitable fire design rules.
ISSN:1369-4332
2048-4011
DOI:10.1177/1369433216653508