A Scintillating Microplate Assay for the Assessment of Protein Kinase Activity
Protein kinases, a class of enzymes that phosphorylate certain tyrosine, serine, and threonine residues, play an important role in cellular functions and are important targets in drug discovery research. Thus, it is of interest to develop a simple assay that can be used to measure protein kinase act...
Gespeichert in:
Veröffentlicht in: | Journal of biomolecular screening 1998-02, Vol.3 (1), p.43-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein kinases, a class of enzymes that phosphorylate certain tyrosine, serine, and threonine residues, play an important role in cellular functions and are important targets in drug discovery research. Thus, it is of interest to develop a simple assay that can be used to measure protein kinase activity toward specific substrates and is suitable for the high throughput screening (HTS) of potential kinase inhibitors. The scintillation proximity concept has been successfully applied for measuring specific kinase activity using surfaces passively coated with a peptide substrate. In this study, we evaluated kinase assay performance on three ScintiStrip platforms: unmodified surface, streptavidin-coated surface, and streptavidin covalently attached to surface. The high affinity of streptavidin toward biotin-linked peptide substrates makes it a unique platform for measuring specific incorporation of radiolabeled phosphate into selected substrates of specific enzymes in the presence of others. Therefore, this assay may be used with cell extracts containing impure kinases as well as with purified enzymes. The scope of this assay was demonstrated with purified tyrosine kinases (e.g., p60c-src kinase) and A431 cell extracts. This scintillation proximity assay is universal, simple, rapid, accurate, and can be adapted for use with robotics for HTS. |
---|---|
ISSN: | 1087-0571 2472-5552 1552-454X |
DOI: | 10.1177/108705719800300106 |