A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?

For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Biomolecular Screening 2015-09, Vol.20 (8), p.1040-1051
Hauptverfasser: Taylor, Jessica, Woodcock, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA–Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery.
ISSN:1087-0571
2472-5552
1552-454X
DOI:10.1177/1087057115590069