Resistivity contribution tensor for two non-conductive overlapping spheres having different radii

We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2024-12, Vol.29 (12), p.2351-2365
Hauptverfasser: Lanzoni, Luca, Radi, Enrico, Sevostianov, Igor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2365
container_issue 12
container_start_page 2351
container_title Mathematics and mechanics of solids
container_volume 29
creator Lanzoni, Luca
Radi, Enrico
Sevostianov, Igor
description We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the steady-state temperature field and the heat flux have been expressed in terms of Mehler–Fock transforms. Then, by imposing Neumann BCs at the surface of the spheres, a system of two Fredholm integral equations is obtained and solved based on Gauss–Laguerre quadrature rule. It is shown that the components of the resistivity contribution tensor exhibit a non-monotonic trend with the distance between sphere centers. In particular, if the inhomogeneity has a symmetric dumbbell-shape, then the extrema of the resistivity contribution tensor components occur when the two overlapping spheres have the same size. Differently, when the inhomogeneity has a lenticular shape, then these extrema are attained for a non-symmetric configuration, namely, for different radii of the intersecting spheres.
doi_str_mv 10.1177/10812865221108373
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1177_10812865221108373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10812865221108373</sage_id><sourcerecordid>10.1177_10812865221108373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-dc5175cbb5fdd440f023d9801ed56805b7c6f281ae961d6e3cb440731a1dd4223</originalsourceid><addsrcrecordid>eNp9UNtKAzEUDKJgrX6Ab_mBrTlJs9l9lOKlUBBEn5dsLm1KTZYkW-nfm6W-CT4czgwzczgMQvdAFgBCPABpgDY1pxQKZIJdoBmIJVSM0Oay4KJXk-Ea3aS0J4RQLtgMyXeTXMru6PIJq-BzdP2YXfA4G59CxLZM_g7YB18VXY-qmA0ORxMPchic3-I07Ew0Ce_kcaLaWVu4zzhK7dwturLykMzd756jz-enj9VrtXl7Wa8eN5Wios2VVhwEV33PrdbLJbGEMt02BIzmdUN4L1RtaQPStDXo2jDVF5dgIKH4KWVzBOe7KoaUorHdEN2XjKcOSDd11P3pqGQW50ySW9Ptwxh9efGfwA-GWGkS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resistivity contribution tensor for two non-conductive overlapping spheres having different radii</title><source>Access via SAGE</source><creator>Lanzoni, Luca ; Radi, Enrico ; Sevostianov, Igor</creator><creatorcontrib>Lanzoni, Luca ; Radi, Enrico ; Sevostianov, Igor</creatorcontrib><description>We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the steady-state temperature field and the heat flux have been expressed in terms of Mehler–Fock transforms. Then, by imposing Neumann BCs at the surface of the spheres, a system of two Fredholm integral equations is obtained and solved based on Gauss–Laguerre quadrature rule. It is shown that the components of the resistivity contribution tensor exhibit a non-monotonic trend with the distance between sphere centers. In particular, if the inhomogeneity has a symmetric dumbbell-shape, then the extrema of the resistivity contribution tensor components occur when the two overlapping spheres have the same size. Differently, when the inhomogeneity has a lenticular shape, then these extrema are attained for a non-symmetric configuration, namely, for different radii of the intersecting spheres.</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/10812865221108373</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Mathematics and mechanics of solids, 2024-12, Vol.29 (12), p.2351-2365</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-dc5175cbb5fdd440f023d9801ed56805b7c6f281ae961d6e3cb440731a1dd4223</cites><orcidid>0000-0002-3513-0273 ; 0000-0002-7410-3008 ; 0000-0003-0809-3566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10812865221108373$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10812865221108373$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Lanzoni, Luca</creatorcontrib><creatorcontrib>Radi, Enrico</creatorcontrib><creatorcontrib>Sevostianov, Igor</creatorcontrib><title>Resistivity contribution tensor for two non-conductive overlapping spheres having different radii</title><title>Mathematics and mechanics of solids</title><description>We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the steady-state temperature field and the heat flux have been expressed in terms of Mehler–Fock transforms. Then, by imposing Neumann BCs at the surface of the spheres, a system of two Fredholm integral equations is obtained and solved based on Gauss–Laguerre quadrature rule. It is shown that the components of the resistivity contribution tensor exhibit a non-monotonic trend with the distance between sphere centers. In particular, if the inhomogeneity has a symmetric dumbbell-shape, then the extrema of the resistivity contribution tensor components occur when the two overlapping spheres have the same size. Differently, when the inhomogeneity has a lenticular shape, then these extrema are attained for a non-symmetric configuration, namely, for different radii of the intersecting spheres.</description><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEUDKJgrX6Ab_mBrTlJs9l9lOKlUBBEn5dsLm1KTZYkW-nfm6W-CT4czgwzczgMQvdAFgBCPABpgDY1pxQKZIJdoBmIJVSM0Oay4KJXk-Ea3aS0J4RQLtgMyXeTXMru6PIJq-BzdP2YXfA4G59CxLZM_g7YB18VXY-qmA0ORxMPchic3-I07Ew0Ce_kcaLaWVu4zzhK7dwturLykMzd756jz-enj9VrtXl7Wa8eN5Wios2VVhwEV33PrdbLJbGEMt02BIzmdUN4L1RtaQPStDXo2jDVF5dgIKH4KWVzBOe7KoaUorHdEN2XjKcOSDd11P3pqGQW50ySW9Ptwxh9efGfwA-GWGkS</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Lanzoni, Luca</creator><creator>Radi, Enrico</creator><creator>Sevostianov, Igor</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3513-0273</orcidid><orcidid>https://orcid.org/0000-0002-7410-3008</orcidid><orcidid>https://orcid.org/0000-0003-0809-3566</orcidid></search><sort><creationdate>202412</creationdate><title>Resistivity contribution tensor for two non-conductive overlapping spheres having different radii</title><author>Lanzoni, Luca ; Radi, Enrico ; Sevostianov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-dc5175cbb5fdd440f023d9801ed56805b7c6f281ae961d6e3cb440731a1dd4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzoni, Luca</creatorcontrib><creatorcontrib>Radi, Enrico</creatorcontrib><creatorcontrib>Sevostianov, Igor</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzoni, Luca</au><au>Radi, Enrico</au><au>Sevostianov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistivity contribution tensor for two non-conductive overlapping spheres having different radii</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2024-12</date><risdate>2024</risdate><volume>29</volume><issue>12</issue><spage>2351</spage><epage>2365</epage><pages>2351-2365</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the steady-state temperature field and the heat flux have been expressed in terms of Mehler–Fock transforms. Then, by imposing Neumann BCs at the surface of the spheres, a system of two Fredholm integral equations is obtained and solved based on Gauss–Laguerre quadrature rule. It is shown that the components of the resistivity contribution tensor exhibit a non-monotonic trend with the distance between sphere centers. In particular, if the inhomogeneity has a symmetric dumbbell-shape, then the extrema of the resistivity contribution tensor components occur when the two overlapping spheres have the same size. Differently, when the inhomogeneity has a lenticular shape, then these extrema are attained for a non-symmetric configuration, namely, for different radii of the intersecting spheres.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10812865221108373</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3513-0273</orcidid><orcidid>https://orcid.org/0000-0002-7410-3008</orcidid><orcidid>https://orcid.org/0000-0003-0809-3566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2024-12, Vol.29 (12), p.2351-2365
issn 1081-2865
1741-3028
language eng
recordid cdi_crossref_primary_10_1177_10812865221108373
source Access via SAGE
title Resistivity contribution tensor for two non-conductive overlapping spheres having different radii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistivity%20contribution%20tensor%20for%20two%20non-conductive%20overlapping%20spheres%20having%20different%20radii&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Lanzoni,%20Luca&rft.date=2024-12&rft.volume=29&rft.issue=12&rft.spage=2351&rft.epage=2365&rft.pages=2351-2365&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/10812865221108373&rft_dat=%3Csage_cross%3E10.1177_10812865221108373%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_10812865221108373&rfr_iscdi=true