Resistivity contribution tensor for two non-conductive overlapping spheres having different radii
We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2024-12, Vol.29 (12), p.2351-2365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider here the problem of a three-dimensional (3D) body subjected to an arbitrarily oriented and remotely applied stationary heat flux. The body includes a non-conductive inhomogeneity (or pore) having the shape of two intersecting spheres with different radii. Using toroidal coordinates, the steady-state temperature field and the heat flux have been expressed in terms of Mehler–Fock transforms. Then, by imposing Neumann BCs at the surface of the spheres, a system of two Fredholm integral equations is obtained and solved based on Gauss–Laguerre quadrature rule. It is shown that the components of the resistivity contribution tensor exhibit a non-monotonic trend with the distance between sphere centers. In particular, if the inhomogeneity has a symmetric dumbbell-shape, then the extrema of the resistivity contribution tensor components occur when the two overlapping spheres have the same size. Differently, when the inhomogeneity has a lenticular shape, then these extrema are attained for a non-symmetric configuration, namely, for different radii of the intersecting spheres. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/10812865221108373 |