Riemannian and Euclidean material structures in anelasticity
In this paper, we discuss the mechanics of anelastic bodies with respect to a Riemannian and a Euclidean geometric structure on the material manifold. These two structures provide two equivalent sets of governing equations that correspond to the geometrical and classical approaches to non-linear ane...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2020-06, Vol.25 (6), p.1267-1293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss the mechanics of anelastic bodies with respect to a Riemannian and a Euclidean geometric structure on the material manifold. These two structures provide two equivalent sets of governing equations that correspond to the geometrical and classical approaches to non-linear anelasticity. This paper provides a parallelism between the two approaches and explains how to go from one to the other. We work in the setting of the multiplicative decomposition of deformation gradient seen as a non-holonomic change of frame in the material manifold. This allows one to define, in addition to the two geometric structures, a Weitzenböck connection on the material manifold. We use this connection to express natural uniformity in a geometrically meaningful way. The concept of uniformity is then extended to the Riemannian and Euclidean structures. Finally, we discuss the role of non-uniformity in the form of material forces that appear in the configurational form of the balance of linear momentum with respect to the two structures. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/1081286519884719 |