Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff–Love plates with a crack

A non-linear model describing the equilibrium of a cracked plate with a volume rigid inclusion is studied. We consider a variational statement for the Kirchhoff–Love plate satisfying the Signorini-type non-penetration condition on the crack faces. For a family of problems, we study the dependence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2019-12, Vol.24 (12), p.3743-3752
Hauptverfasser: Lazarev, Nyurgun, Itou, Hiromichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-linear model describing the equilibrium of a cracked plate with a volume rigid inclusion is studied. We consider a variational statement for the Kirchhoff–Love plate satisfying the Signorini-type non-penetration condition on the crack faces. For a family of problems, we study the dependence of their solutions on the location of the inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on a suitable Sobolev space. For this problem, the location parameter of the inclusion serves as a control parameter. We prove continuous dependence of the solutions with respect to the location parameter and the existence of a solution of the optimal control problem.
ISSN:1081-2865
1741-3028
DOI:10.1177/1081286519850608