Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous Kirchhoff–Love plates with a crack
A non-linear model describing the equilibrium of a cracked plate with a volume rigid inclusion is studied. We consider a variational statement for the Kirchhoff–Love plate satisfying the Signorini-type non-penetration condition on the crack faces. For a family of problems, we study the dependence of...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2019-12, Vol.24 (12), p.3743-3752 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A non-linear model describing the equilibrium of a cracked plate with a volume rigid inclusion is studied. We consider a variational statement for the Kirchhoff–Love plate satisfying the Signorini-type non-penetration condition on the crack faces. For a family of problems, we study the dependence of their solutions on the location of the inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on a suitable Sobolev space. For this problem, the location parameter of the inclusion serves as a control parameter. We prove continuous dependence of the solutions with respect to the location parameter and the existence of a solution of the optimal control problem. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/1081286519850608 |