Variational characterization of real eigenvalues in linear viscoelastic oscillators
This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues all...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2018-10, Vol.23 (10), p.1377-1388 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues allow for a variational characterization of maxmin type, and the eigenvalues and eigenvectors can be determined very efficiently by the safeguarded iteration, which converges quadratically and, for extreme eigenvalues, monotonically. Numerical methods demonstrate the performance and the reliability of the approach. The method succeeds where some current approaches, with restrictive physical assumptions, fail. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/1081286517726368 |