Variational characterization of real eigenvalues in linear viscoelastic oscillators

This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2018-10, Vol.23 (10), p.1377-1388
Hauptverfasser: Mohammadi, Seyyed Abbas, Voss, Heinrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues allow for a variational characterization of maxmin type, and the eigenvalues and eigenvectors can be determined very efficiently by the safeguarded iteration, which converges quadratically and, for extreme eigenvalues, monotonically. Numerical methods demonstrate the performance and the reliability of the approach. The method succeeds where some current approaches, with restrictive physical assumptions, fail.
ISSN:1081-2865
1741-3028
DOI:10.1177/1081286517726368