On the effect of mechanical non-linearities on vortex-induced lock-in vibrations
Vortex-induced vibrations at lock-in conditions are modeled through generalized van der Pol-Duffing oscillators endowed with frequency-dependent coefficients, taking inspiration from fluid-elastic models. Accordingly, it is found that the limit-cycle amplitude and the non-linear frequency are mutual...
Gespeichert in:
Veröffentlicht in: | Mathematics and mechanics of solids 2017-10, Vol.22 (10), p.1922-1935 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vortex-induced vibrations at lock-in conditions are modeled through generalized van der Pol-Duffing oscillators endowed with frequency-dependent coefficients, taking inspiration from fluid-elastic models. Accordingly, it is found that the limit-cycle amplitude and the non-linear frequency are mutually dependent (feedback effect), differently from the classic oscillator behavior. Consequently, the mechanical non-linearities, which are often believed to be unimportant, do affect the amplitude of motion. Examples concerning an ideal one degree-of-freedom van der Pol-Duffing oscillator and a two degree-of-freedom model, coarsely representative of a tower building, confirm the importance of this approach also from a technical point of view. Thus, non-linear geometric terms and modal interaction (even in non-resonant cases) can lead to non-negligible modifications of purely aeroelastic problems. |
---|---|
ISSN: | 1081-2865 1741-3028 |
DOI: | 10.1177/1081286516649991 |