A rolling contact fatigue life prediction model for bearing steel considering its gradient structure due to cyclic hardening
This paper presents a rolling contact fatigue life prediction model for bearing steel. In the initial stage of rolling contact, the gradient structure appears in the subsurface region of bearing steel and the hardness shows a gradient distribution along the contact depth direction due to the roller...
Gespeichert in:
Veröffentlicht in: | International journal of damage mechanics 2024-04, Vol.33 (4), p.293-309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a rolling contact fatigue life prediction model for bearing steel. In the initial stage of rolling contact, the gradient structure appears in the subsurface region of bearing steel and the hardness shows a gradient distribution along the contact depth direction due to the roller compaction effect. This indicates that the fatigue resistance of bearing steel varies in the subsurface region. Besides, each subsurface material volume element is subject to different stress cycles. Based on Weibull theory, the survival possibility of subsurface volume elements is formulated. Then the rolling contact fatigue life is evaluated considering the stress state and anti-fatigue performance of each elementary volume of the subsurface material. According to the phenomenon and assumption, the model proposed for gradient material was applied in the rolling contact fatigue life prediction of the bearing steel GCr15 and validated with the fatigue experiment data in the open literature. Furthermore, the accuracy of the proposed model results was compared with the traditional empirical rolling contact fatigue life prediction models. |
---|---|
ISSN: | 1056-7895 1530-7921 |
DOI: | 10.1177/10567895241234383 |