Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked with TLR4-signaling
Toll-like receptor 4 (TLR4) and MD-2 recognize lipid A, the active moiety of microbial lipopolysaccharide (LPS). Little is known about mechanisms for LPS recognition by TLR4/MD-2. We here showed, by using in vitro transfectants, ligand-induced TLR4-oligomerization, which required both membrane CD14...
Gespeichert in:
Veröffentlicht in: | Journal of endotoxin research 2004-08, Vol.10 (4), p.257-260 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Toll-like receptor 4 (TLR4) and MD-2 recognize lipid A, the active moiety of microbial lipopolysaccharide (LPS). Little is known about mechanisms for LPS recognition by TLR4/MD-2. We here showed, by using in vitro transfectants, ligand-induced TLR4-oligomerization, which required both membrane CD14 and MD-2. We previously reported that lipid IVa, a lipid A precursor, is agonistic on mouse TLR4/MD-2 but antagonistic on human TLR4/MD-2 and chimeric mouse TLR4/human MD-2. Lipid IVa triggered oligomerization of mouse TLR4/MD-2 but not human TLR4/MD-2 or chimeric mouse TLR4/human MD-2. Further, lipid IVa inhibited lipid A-dependent oligomerization of chimeric mouse TLR4/human MD-2. These results demonstrate that ligand-induced TLR4-oligomerization is directly linked with TLR4-signaling and suggest that MD-2 has an important role in regulating TLR4-oligomerization. |
---|---|
ISSN: | 0968-0519 |
DOI: | 10.1177/09680519040100041001 |