Rheology of magnetohydrodynamic viscoelastic fluid flow and heat transfer during the blade coating process with blade slip

Blade coating is a widely used technique for achieving smooth surfaces by applying a protective fluid layer from the blade onto the moving substrate. Under the blade coating phenomena, the impacts of MHD, velocity slip, and heat distribution of the third-grade fluid for both planar and exponential c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2024-08, Vol.32
Hauptverfasser: Abbas, Z, Javed, M, Hanif, A, Rafiq, MY, Khaliq, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blade coating is a widely used technique for achieving smooth surfaces by applying a protective fluid layer from the blade onto the moving substrate. Under the blade coating phenomena, the impacts of MHD, velocity slip, and heat distribution of the third-grade fluid for both planar and exponential coaters are taken into discussion. Lubrication approximation theory is employed for solving nonlinear equations, while the numerical method known as the shooting technique is utilized to characterize pressure, pressure gradient, velocity, and heat distribution. Numerous parameters including the slip parameter, third-grade fluid, coating thickness, and MHD are numerically investigated to show the effect on fluid flow and shown in several graphs and tables. The results prove the viscoelastic nature of fluid along with MHD and viscous slip to be controlling parameters of pressure and blade load which lead to varying coating thickness, which may help in achieving improved substrate life and efficient coating process.
ISSN:0967-3911
1478-2391
DOI:10.1177/09673911241273679