Effective utilization of recycled fine aggregate powder as reinforcement particles in polyethylene composite

Effective waste concrete recycling is desirable from the viewpoints of environmental protection and extending the working lives of waste concrete final disposal sites. Recycled fine aggregate powders (RFAP) were obtained by milling waste concrete, and in this paper, we attempted to use RFAP as reinf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2021-09, Vol.29 (7), p.939-952, Article 0967391120951381
Hauptverfasser: Kanda, Yasuyuki, Abass, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective waste concrete recycling is desirable from the viewpoints of environmental protection and extending the working lives of waste concrete final disposal sites. Recycled fine aggregate powders (RFAP) were obtained by milling waste concrete, and in this paper, we attempted to use RFAP as reinforcement particles in a polyethylene (PE) composite material. The PE powder and RFAP were blended together, and composites were fabricated using compression molding. Our results showed that the flexural strength and flexural modulus of the created composites improved with increased RFAP content. The RFAP dispersion state was honeycomb-like in the composite material, and from inspecting the specimen side view after three-point bending tests, it was apparent that crack propagation proceeded into the RFAP part of the composite, between PE particles. We then performed elastic stress analysis on the composites, in order to define the RFAP reinforcing behavior, using finite element analysis based on the homogenization method. As a result, it was revealed that the Mises stress decreased with increased RFAP content, confirming that there is a potential role for RFAP as reinforcement particles in PE-based composites.
ISSN:0967-3911
1478-2391
DOI:10.1177/0967391120951381