Pedometric tools for classification of southwestern Amazonian soils: A quali-quantitative interpretation incorporating visible-near infrared spectroscopy

The southwestern region of the Amazon has great environmental variability, presents a great complexity of pedoenvironments due to its rich variability of geological and geomorphological environments, as well as for being a transition region with other two Brazilian biomes. In this study, the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of near infrared spectroscopy (United Kingdom) 2022-02, Vol.30 (1), p.18-30
Hauptverfasser: Tavares, Orlando CH, Tavares, Tiago R, Pinheiro Junior, Carlos R, da Silva, Luciélio M, Wadt, Paulo GS, Pereira, Marcos G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The southwestern region of the Amazon has great environmental variability, presents a great complexity of pedoenvironments due to its rich variability of geological and geomorphological environments, as well as for being a transition region with other two Brazilian biomes. In this study, the use of pedometric tools (the Algorithms for Quantitative Pedology (AQP) R package and diffuse reflectance spectroscopy) was evaluated for the characterization of 15 soil profiles in southwestern Amazon. The AQP statistical package—which evaluates the soil in-depth based on slicing functions—indicated a wide range of variation in soil attributes, especially in the superficial horizons. In addition, the results obtained in the similarity analysis corroborated with the description of physical, chemical components and oxide contents in-depth, aiding the classification of soil profiles. The in-depth characterization of visible-near infrared spectra allowed inference of the pedogenetic processes of some profiles, setting precedents for future work aiming to establish analytical strategies for soil classification in southwestern Amazon based on spectral data.
ISSN:0967-0335
1751-6552
DOI:10.1177/09670335211061854