An investigation on thermo-mechanical characterization of activated carbon/coconut shell powder reinforced natural composites

The main objective of this study is that, to develop the possibility of exploration on the usage of coconut shell (CS) and its derivative of natural activated carbon (AC) filler material, in the motive to fabricate the natural filler reinforced hybrid composite. In this particular study, E-Glass fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2022-10
Hauptverfasser: Manikandan, R, Suresh, G, Abbas, S Mohamed, Selvi, S, Begum, S Suberiya, Vezhavendhan, R, Kumaresan, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of this study is that, to develop the possibility of exploration on the usage of coconut shell (CS) and its derivative of natural activated carbon (AC) filler material, in the motive to fabricate the natural filler reinforced hybrid composite. In this particular study, E-Glass fiber has been chosen as the primary reinforcement and various proportions of CS and AC powder have been selected as the filler components along with the epoxy resin (matrix). Six variants of laminates have been fabricated (GFE, 3% CS, 6% CS, 3% AC, 6% AC and 6% CS/AC) by keeping the E-glass fiber and epoxy as the constant mixture. Besides that, to validate the physical and thermal stability of the composites tests like, Fourier infrared spectroscopy, thermogravimetric analysis (TGA), Scanning Electron Microscope, Tensile, Flexural, Impact, Heat Deflection Test (HDT), Thermal conductivity and Moisture absorption tests have been conducted on all combinations. During the tests, it has been observed that tensile (3% AC—384 MPa), flexural (3% AC—435 MPa), impact (3% AC—19.5 kJ/m2), HDT and moisture values (0% Particulate—0.475%) have shown a significant surge in hybrid composites by slightly compromising the fall of value in moisture absorption on AC composites. Simultaneously, thermal conductivity (6% AC—2.67 W/mK), and TGA (of 6% AC—440°C) values have been found higher in AC epoxy compounds out of all combinations.
ISSN:0954-4089
2041-3009
DOI:10.1177/09544089221132721