Exploring the potential of benzoxazine-based nanocomposites for lightweight neutron shielding applications

Given their substantial neutron capture cross-section, extreme hardness, and high chemical and thermal stability, boron-based materials are widely used as building blocks to protect against highly ionizing radiations such as gamma rays and neutrons. Indeed, uncontrolled nuclear radiation exposure ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High performance polymers 2023-10, Vol.35 (8), p.812-826
Hauptverfasser: Abdous, Slimane, Derradji, Mehdi, Mekhalif, Zineb, Khiari, Karim, Mehelli, Oussama, Bourenane Cherif, Younes
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given their substantial neutron capture cross-section, extreme hardness, and high chemical and thermal stability, boron-based materials are widely used as building blocks to protect against highly ionizing radiations such as gamma rays and neutrons. Indeed, uncontrolled nuclear radiation exposure can be highly hazardous to radiation workers and the general public. In this sense, this work presents an extensive study and experimental evaluation of the nuclear shielding features of boron carbide (B4C) based nanocomposite, where bisphenol-A based polybenzoxazine (BA-PBz) was used as matrix. The latter was used for its wide range of interesting properties that overcome some of the shortcomings of conventional phenolic resins. A two-pot synthesis process was adopted for the synthesis of (BA-Bz) monomer. Moreover, the boron carbide nanoparticles were treated with a silane (KH-560) coupling agent in order to improve the intramolecular interactions with the polymeric matrix. The neutron shielding studies were carried out at the Nuclear Research reactor of Algeria NUR. The results showed that the developed boron carbide-based nanocomposite exhibits intriguing shielding performances and good thermal stability. The highest performances were obtained at a B4C concentration of 5. wt %, where the macroscopic cross section was found to be (Σ = 3.3878 cm−1) with a screening ratio of (S = 97.78%).
ISSN:0954-0083
1361-6412
DOI:10.1177/09540083231179114