Fast pyrolysis bio-oil from lignocellulosic biomass for the development of bio-based cyanate esters and cross-linked networks

Fast pyrolysis of pine wood was carried out to yield a liquid bio-oil mixture that was separated into organic and aqueous phases. The organic phase (ORG-bio-oil) was characterized by gas chromatography–mass spectroscopy, 31P-nuclear magnetic resonance spectroscopy, and Fourier transform infrared (FT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High performance polymers 2019-11, Vol.31 (9-10), p.1140-1152
Hauptverfasser: Barde, Mehul, Edmunds, Charles Warren, Labbé, Nicole, Auad, Maria Lujan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast pyrolysis of pine wood was carried out to yield a liquid bio-oil mixture that was separated into organic and aqueous phases. The organic phase (ORG-bio-oil) was characterized by gas chromatography–mass spectroscopy, 31P-nuclear magnetic resonance spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. It was further used as a raw material for producing a mixture of biphenolic compounds (ORG-biphenol). ORG-bio-oil, ORG-biphenol, and bisphenol-A were reacted with cyanogen bromide to yield cyanate ester monomers. Cyanate esters were characterized using FTIR spectroscopy and were thermally cross-linked to develop thermoset materials. Thermomechanical properties of cross-linked cyanate esters were assessed using dynamic mechanical analysis and compared with those of cross-linked bisphenol-A-based cyanate ester. ORG-biphenol cyanate ester was observed to have a superior glass transition temperature (350–380°C) as compared to bisphenol-A cyanate ester (190–220°C). Cyanate esters derived from bio-oil have the potential to be a sustainable alternative to the bisphenol-A-derived analog.
ISSN:0954-0083
1361-6412
DOI:10.1177/0954008319829517