Sunn hemp hessian cloth reinforced thermoplastic composites: Effects of chemical treatment and gamma-ray irradiation

Untreated and alkali-treated Sunn hemp hessian cloth-reinforced high-density polyethylene (HDPE) composites were prepared by the compression molding method. The fabricated composites contained 40, 45, 50, 55, 60, and 65wt% fiber contents and were optimized. 55wt% fiber contents reinforced composites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermoplastic composite materials 2024-07, Vol.37 (7), p.2246-2269
Hauptverfasser: Shohrawardy, Mohammed Hossan S, Mina, Md Forhad, Alam, AKM M, Khan, Ruhul Amin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Untreated and alkali-treated Sunn hemp hessian cloth-reinforced high-density polyethylene (HDPE) composites were prepared by the compression molding method. The fabricated composites contained 40, 45, 50, 55, 60, and 65wt% fiber contents and were optimized. 55wt% fiber contents reinforced composites showed better mechanical properties. This composite was alkali treated and irradiated under gamma-ray at doses 2.5‒7.5 kGy at the rate of 6 kGy/h. The X-ray diffraction (XRD) result indicates that the crystallinity of the alkali-treated Sunn hemp-reinforced HDPE composites shows a higher value than those of untreated and irradiated composites. Better adhesion between fiber and matrix was observed from surface micrographs. Fourier-transform infrared (FTIR) spectroscopy reveals cross-linking between fiber and matrix. The water intake properties of irradiated composite show more hydrophobic nature than that of untreated and alkali-treated composites. The tensile strength of the gamma-ray irradiated composites are 20% and 33% greater than that of untreated and alkali-treated composites. Similar results are found for Young’s modulus. At a certain dose of 5 kGy, the irradiated composites show improved thermal, mechanical, and structural properties than untreated and alkali-treated composites. Graphical Abstract
ISSN:0892-7057
1530-7980
DOI:10.1177/08927057231200007