Nano-additive reinforcement of mixture epoxy syntactic foams
Carbon nanofibers (CNFs) and halloysite nanotubes (HNTs) were incorporated in syntactic foams containing a 90% by volume homogeneous mixture of (20/80 wt%) glass/thermoplastic microballoons to enhance the mechanical and impact response properties. Tensile, compressive, and impact tests were employed...
Gespeichert in:
Veröffentlicht in: | Journal of thermoplastic composite materials 2020-12, Vol.33 (12), p.1674-1691 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon nanofibers (CNFs) and halloysite nanotubes (HNTs) were incorporated in syntactic foams containing a 90% by volume homogeneous mixture of (20/80 wt%) glass/thermoplastic microballoons to enhance the mechanical and impact response properties. Tensile, compressive, and impact tests were employed to comparatively characterize the effect of nano-additive reinforcement on mechanical response properties. Compressive strength and modulus enhancements as large as 39% and 18%, respectively, were achieved with a 0.125 wt% addition of CNF and increases of 61% and 7%, respectively, were achieved with a 0.125 wt% addition of HNT. Tensile strength and modulus enhancements as large as 107% and 68%, respectively, were achieved with a 0.125 wt% addition of CNF and increases of 104% and 70%, respectively, were achieved with a 0.125 wt% addition of HNT. Impact analysis data were used to show that measured peak force increased and build-up time to peak force decreased with increasing CNF or HNT weight percentage due to stiffening of the matrix. The smallest increase observed in peak force was 20% for a 0.125 wt% addition of CNF and 17% for a 0.125 wt% addition of HNT. |
---|---|
ISSN: | 0892-7057 1530-7980 |
DOI: | 10.1177/0892705719835282 |