Synthesis and characterization of novel organoclay-epoxy based flame retardant nanocomposites
In this study, cost-effective, widely spread, and nontoxic fillers were used to improve the flame retardancy of epoxy nanocomposites. A novel and environmentally benign cation exchange approach was used for the modification of bentonite nanoclay with positively charged L-serine, used to synthesize n...
Gespeichert in:
Veröffentlicht in: | Journal of reinforced plastics and composites 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, cost-effective, widely spread, and nontoxic fillers were used to improve the flame retardancy of epoxy nanocomposites. A novel and environmentally benign cation exchange approach was used for the modification of bentonite nanoclay with positively charged L-serine, used to synthesize nanocomposites. Modification of clay was confirmed by using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. X-ray diffraction (XRD) technique proved increase of d-spacing from 12.82 Å to 14.42 Å as a result of cation exchange. Field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate microstructure of the nanocomposites. Reduction in weight loss, with 28.0 % to 34.0 % increase in char yield of epoxy nanocomposites was determined by the thermogravimetric analysis (TGA). Underwriters laboratories (UL-94) V-0 ratings of nanocomposites indicated improved flame retardancy. Nanofillers significantly reduced the loading of aluminum tri-hydroxide (ATH) and improved the flame retardancy through its synergistic effect. |
---|---|
ISSN: | 0731-6844 1530-7964 |
DOI: | 10.1177/07316844241272956 |