Prediction of statistical life time for unidirectional CFRTP under cyclic loading

Recently, the Innovative Composite Center of Kanazawa Institute of Technology developed a thermoplastic epoxy resin (TP-EP). Resin-impregnated carbon fiber reinforced TP-EP (CF/TP) strands molded by pultrusion were developed by Komatsu Matere Co., Ltd., for use as tension rods. This study examines t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of reinforced plastics and composites 2021-10, Vol.40 (19-20), p.749-758
Hauptverfasser: Nakada, Masayuki, Miyano, Yasushi, Kageta, Soshi, Nishida, Hirofumi, Hayashi, Yutaka, Uzawa, Kiyoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the Innovative Composite Center of Kanazawa Institute of Technology developed a thermoplastic epoxy resin (TP-EP). Resin-impregnated carbon fiber reinforced TP-EP (CF/TP) strands molded by pultrusion were developed by Komatsu Matere Co., Ltd., for use as tension rods. This study examines the prediction of the statistical life time for these developed CF/TP strands under cyclic tension loading with comparison to our earlier report of similar predictions for carbon fiber reinforced thermoset epoxy resin (CF/TS) strands having a thermoset epoxy resin (TS-EP) as a matrix. First, test methods for static and fatigue strengths at elevated temperatures were developed for CF/TP strands. Second, static and fatigue tensile strengths of CF/TP strands were measured statistically at various constant temperatures under a constant strain rate and frequency. The master curves of statistical fatigue tensile strengths for CF/TP strands were constructed by substituting the measured data into the formulations of these strengths based on the matrix resin viscoelasticity. The fatigue strength characteristics of CF/TP strands were discussed through comparison to those of CF/TS strands with thermosetting epoxy resin as the matrix.
ISSN:0731-6844
1530-7964
DOI:10.1177/07316844211005542