Life-Cycle Approach to Healthy Airport Terminal Buildings: Spatial-Temporal Analysis of Mitigation Strategies for Addressing the Pollutants that Affect Climate Change and Human Health

The potential environmental and human health impacts associated with constructing and operating terminal buildings is explored for commercial airports in the United States. Research objectives are to quantify: (1) baseline and mitigated greenhouse gas (GHG) and criteria air pollutant (CAP) emissions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2023-01, Vol.2677 (1), p.797-813
Hauptverfasser: Greer, Fiona, Horvath, Arpad, Rakas, Jasenka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential environmental and human health impacts associated with constructing and operating terminal buildings is explored for commercial airports in the United States. Research objectives are to quantify: (1) baseline and mitigated greenhouse gas (GHG) and criteria air pollutant (CAP) emissions; (2) operational costs; and (3) climate change damages from terminal building construction and materials, operational energy consumption, water consumption and wastewater generation, and solid waste generation. An Excel-based decision-support tool, Airport Terminal Environmental Support Tool (ATEST), has been created to allow stakeholders to conduct preliminary assessments of current baseline and potential mitigated impacts. Emissions are quantified using a life-cycle approach that accounts for cradle-to-grave effects. Climate change and human health indicators are characterized using EPA’s Tool for Reduction and Assessment of Chemical Impact (TRACI) factors. ATEST is applied to multiple case study airports— Reno/Tahoe International (RNO), Pittsburgh International (PIT), Newark Liberty International (EWR), Seattle-Tacoma International (SEA), San Francisco International (SFO), and Hartsfield-Jackson Atlanta International (ATL)—to demonstrate its scalability and capability to assess varying spatial factors. Across all airports, electricity mix and construction are significant in determining GHG and CAP emissions, respectively. A sensitivity analysis of GHG emissions for the SFO case study reveals that the electricity mix, amount of electricity consumed within the terminal, terminal gross area, and amount of compostables in the solid waste stream have the most impact on increasing annual GHG emissions. ATEST represents a crucial first step in helping stakeholders to make decisions that will lead to healthier, more sustainable airport terminals.
ISSN:0361-1981
2169-4052
DOI:10.1177/03611981221101896