Effect of Taper on Shear Stiffness of Steel-Reinforced Neoprene Bearing Pads

Steel-reinforced elastomeric bearing pads are widely used in bridge construction to vertically support girders on piers while also accommodating translational and rotational girder deformations caused by live loads and temperature changes. To support sloped girders, flat bearing pads of uniform thic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2021-08, Vol.2675 (8), p.186-197
Hauptverfasser: Patil, Satyajeet R., Consolazio, Gary R., Hamilton, H. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steel-reinforced elastomeric bearing pads are widely used in bridge construction to vertically support girders on piers while also accommodating translational and rotational girder deformations caused by live loads and temperature changes. To support sloped girders, flat bearing pads of uniform thicknesses are typically used with either tapered steel shim plates or an inclined concrete bearing seat. The use of tapered pads has the potential to reduce both construction time and cost by eliminating the need for tapered plates or seats to match the girder slope. However, limited research has been performed to investigate the effect of introducing taper on relevant design properties of bearing pads. In this paper, results are presented from experimental testing that was performed to quantify the effect of taper on shear stiffnesses of pads having varied geometric characteristics (plan view dimensions, elastomer thicknesses, and slope angles). An experimental bearing pad test device was designed and utilized to impose shear loads in accordance with ASTM standards, while simultaneously maintaining a constant axial load. Bearing pads chosen for testing were tapered variations of standard flat bridge bearing pads used in the state of Florida, U.S. Results obtained from the study revealed that shear stiffness was not significantly influenced by the introduction of taper angle, the direction of shear along the length of pads, or axial load level. The shear stiffness of tapered pads remained within approximately 10% of the shear stiffness of corresponding flat pads.
ISSN:0361-1981
2169-4052
DOI:10.1177/0361198121996709