Simple Methodology for the Development and Analysis of Local Driving Cycles Applied in the Study of Cars and Motorcycles in Recife, Brazil
Standard driving cycles are usually used to compare vehicles from distinct regions, and local driving cycles reproduce more realistic conditions in specific regions. In this article, we employed a simple methodology for developing local driving cycles and subsequently performed a kinematic and energ...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2021-06, Vol.2675 (6), p.213-224 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Standard driving cycles are usually used to compare vehicles from distinct regions, and local driving cycles reproduce more realistic conditions in specific regions. In this article, we employed a simple methodology for developing local driving cycles and subsequently performed a kinematic and energy analysis. As an application, we employed the methodology for cars and motorcycles in Recife, Brazil. The speed profile was collected using a smartphone (1 Hz) validated against a high precision global positioning system (10 Hz), presenting a mean absolute error of 3 km/h. The driving cycles were thus developed using the micro-trip method. The kinematic analysis indicated that motorcycles had a higher average speed and acceleration (32.5 km/h, 0.84 m/s2) than cars (22.6 km/h, 0.55 m/s2). As a result of the energy analysis, it was found that inertia is responsible for most of the fuel consumption for both cars (59%) and motorcycles (41%), but for motorcycles the aerodynamic drag is also relevant (36%). With regards to fuel consumption, it was found that the standard driving cycle used in Brazil (FTP-75; 2.47 MJ/km for cars and 0.84 MJ/km for motorcycles) adequately represents the driving profile for cars (2.46 MJ/km), and to a lesser extent motorcycles (0.91 MJ/km) in off-peak conditions. Finally, we evaluated the influence of the vehicle category on energy consumption, obtaining a maximum difference of 38% between a 2.0 L sports utility vehicle and a 1.0 L hatchback. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.1177/0361198121991850 |