Quantifying In Situ Tack Coat Performance Using the TackBond Tester for Quality Control

In light of the various quality assurance (QA) issues pertaining to tack coats that occur during construction, there is a need for a means of verifying interlayer bond quality in situ. Despite the immense use of tack coat as a constituent in paving, there are no construction specifications with prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2022-04, Vol.2676 (4), p.255-266
Hauptverfasser: Wruck, Blaine M., Coleri, Erdem, Villarreal, Richard, Kumar, Vikas, Batti, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In light of the various quality assurance (QA) issues pertaining to tack coats that occur during construction, there is a need for a means of verifying interlayer bond quality in situ. Despite the immense use of tack coat as a constituent in paving, there are no construction specifications with provisions for the quantification of tack coat bond quality in laboratory or field settings. In this study, a construction QA process for tack coat bond performance was proposed. A novel field tack coat bond strength test device, TackBond, was developed and used for this purpose. The performance of engineered (new tack coat technologies that are tracking less) and conventional tack coats was also evaluated in the laboratory and the field using the developed TackBond test system. The TackBond device was improved in this study by adding features that render it more practical, portable, accurate, and better suited for a variety of pavement surface conditions. Engineered tack coat performance was compared with that of tack coats used conventionally on both milled and overlay surface types. The suitability of the TackBond Test device for capturing the true response of each tack coat was first evaluated by comparing results from TackBond laboratory tests with monotonic direct shear tests (DST) on laboratory-produced samples. Strong correlations between the two test types were achieved. Results of field and laboratory TackBond tests showed that the in situ QA control process developed in this study could be effectively used to improve the in situ tack coat bond performance.
ISSN:0361-1981
2169-4052
DOI:10.1177/03611981211058134