Emission Implications of Plug-in Hybrid Electric Vehicles Through an Empirical Exploration of Engine Starts
This paper aims to characterize the engine start activity profiles and emission potential of various plug-in hybrid electric vehicle (PHEV) models by examining the characteristics associated with engine starts, identifying the travel conditions that trigger engine starts, and determining the frequen...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2021-09, Vol.2675 (9), p.620-633 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to characterize the engine start activity profiles and emission potential of various plug-in hybrid electric vehicle (PHEV) models by examining the characteristics associated with engine starts, identifying the travel conditions that trigger engine starts, and determining the frequency of different types of engine starts. The study analyzed on-road vehicle data from six PHEV models: Toyota Prius Plug-in, Ford C-Max Energi, Ford C-Max Fusion, Toyota Prius Prime, Chrysler Pacifica, and Chevrolet Volt. An analysis on travel conditions before engine starts revealed that low state-of-charge is the dominant engine start trigger for PHEVs with high all-electric range whereas high vehicle power requirement is the most critical trigger for PHEVs with low all-electric range. For PHEVs with mid-range capabilities, several vehicle specifications, ranging from peak electric motor power to curb weight, could be engine start determinants. A strong inverse correlation exists between battery capacity and the annual frequency of engine starts but this relationship does not hold for cold and high-power cold starts. Both the low and the high battery capacity PHEVs logged fewer cold starts than the mid-sized battery vehicles, indicating that there could be a fundamental tradeoff between engine start emissions and fuel displacement for PHEVs to a certain degree. Despite this tradeoff, all PHEV models in the study logged fewer cold starts than comparable conventional internal combustion engine vehicles, performing the same trips. Ultimately, long-range PHEVs with high battery capacity are found to be ideal for both curbing start emissions and reducing fuel use. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.1177/03611981211003895 |