Analysis of Global Stability, Anchor Spacing, and Support Cable Loads in Wire Mesh and Cable Net Slope Protection Systems
Wire mesh and cable net slope protection have been in use for more than 50 years along North American highways to control rockfall on actively eroding slopes. The basic design of these systems is comparatively similar throughout North America. It consists of a top horizontal cable suspended by regul...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2005-01, Vol.1913 (1), p.205-213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wire mesh and cable net slope protection have been in use for more than 50 years along North American highways to control rockfall on actively eroding slopes. The basic design of these systems is comparatively similar throughout North America. It consists of a top horizontal cable suspended by regularly spaced anchors, typically a perimeter or widely spaced grid of horizontal and vertical support cables, and double-twisted, hexagonal wire mesh laced to the support ropes. To date, the design of the slope protection systems has been based primarily on empirical methods, engineering judgment, and experience. Although these systems generally perform well, there is some consensus among geotechnical specialists that some elements in the system may be overdesigned or even unnecessary. In addition, system failures under a variety of loading conditions within the past few decades indicate that certain design elements may in fact be underdesigned for their desired application. Analytical and numerical models to evaluate the stability of slope protection systems are presented. The inclusion of interior horizontal support ropes in addition to the top horizontal rope does not reduce the stress within the mesh and accordingly provides no mechanical benefit. Results also show that the stresses on the vertical support rope are much smaller than the top horizontal support rope. Therefore, the vertical ropes do not need to be as strong as the top horizontal rope. Further, some useful design charts for the design of slope protection system are presented. |
---|---|
ISSN: | 0361-1981 2169-4052 |
DOI: | 10.1177/0361198105191300120 |