A wind speed interval prediction method for reducing noise uncertainty

Due to the noise uncertainty, the conventional point prediction model is difficult to describe the actual characteristics of wind speed and lacks a description of the wind speed fluctuation range. In this paper, the kernel density estimation according to its error value is given, and then its fluctu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind engineering 2024-08, Vol.48 (4), p.532-552
Hauptverfasser: Li, Kun, Liu, Yayu, Han, Ying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the noise uncertainty, the conventional point prediction model is difficult to describe the actual characteristics of wind speed and lacks a description of the wind speed fluctuation range. In this paper, the kernel density estimation according to its error value is given, and then its fluctuation range is found to combine the prediction results of the test set to get its prediction range. Firstly, the singular spectrum analysis (SSA) is introduced to conduct the noise reduction, and variational modal decomposition (VMD) is performed to handle the sequences, then an improved slime mold algorithm (SMA) is proposed to optimize the VMD, and the stochastic configuration networks (SCNs) is applied to perform the prediction. Finally, the interval prediction results are calculated by fusing the point prediction error and kernel density estimation. The experimental results demonstrate that the proposed method can effectively reduce the noise interference in the wind speed prediction.
ISSN:0309-524X
2048-402X
DOI:10.1177/0309524X231217262