A BEM theory adaption for inclusion of hub ratio effects in HAWT rotor design and analysis

A large hub ratio in a horizontal axis wind turbine (HAWT) rotor can provide aerodynamic and structural design benefits, but the flow effects are not accounted for in the classical Blade Element Momentum Method (BEMM). Research into the effect of HAWT rotor hub ratio, necessitated development of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind engineering 2023-08, Vol.47 (4), p.867-882
1. Verfasser: Fawkes, Howard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A large hub ratio in a horizontal axis wind turbine (HAWT) rotor can provide aerodynamic and structural design benefits, but the flow effects are not accounted for in the classical Blade Element Momentum Method (BEMM). Research into the effect of HAWT rotor hub ratio, necessitated development of an adaption to the BEMM, so that rotors with large hub ratios, could be designed to be aerodynamically efficient, and so that the flow effects could be included in performance prediction. Results from the BEMM with large-hub adaption were compared with results from using the classical BEMM and with results from CFD simulation. Two sets of rotors were analysed, one set in a viscous flow regime and the other in a turbulent flow regime. The BEMM with large-hub adaption, was found to provide rotor designs with better performance and provided a more accurate prediction of relative rotor power than the classical BEMM.
ISSN:0309-524X
2048-402X
DOI:10.1177/0309524X231166319