Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch
The performance of a 5-m diameter Darrieus vertical axis wind turbine was predicted using both a double multiple streamtube model and a two-dimensional unsteady Reynolds-averaged Navier–Stokes computational fluid dynamics simulation with constant rotational speed for a series of operational points....
Gespeichert in:
Veröffentlicht in: | Wind engineering 2017-02, Vol.41 (1), p.74-90 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of a 5-m diameter Darrieus vertical axis wind turbine was predicted using both a double multiple streamtube model and a two-dimensional unsteady Reynolds-averaged Navier–Stokes computational fluid dynamics simulation with constant rotational speed for a series of operational points. The actual performance was measured in both fixed and variable pitch modes. The aims were (1) to compare starting torque and peak efficiency in fixed and variable pitch modes and (2) to test an overspeed control mechanism. Starting torque was approximately three times higher in variable pitch mode and the maximum efficiency on some runs was significantly higher. The overspeed control mechanism functioned consistently as designed. Thus, variable pitch was shown to overcome two major disadvantages of normal fixed pitch vertical axis wind turbines, self-starting and overspeed control. Discrepancies between the predicted and measured results showed the importance of accurately assessing parasitic drag losses and the need for three-dimensional simulation to give reliable performance predictions. |
---|---|
ISSN: | 0309-524X 2048-402X |
DOI: | 10.1177/0309524X16677884 |