Semantics-preserving optimisation of mapping multi-column key constraints for RDB to RDF transformation

The relational database (RDB) to resource description framework (RDF) transformation is a major semantic information extraction method because most web data are managed by RDBs. Existing automatic RDB-to-RDF transformation methods generate RDF data without losing the semantics of original relational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information science 2020-05
Hauptverfasser: Jun, Hee-Gook, Im, Dong-Hyuk, Kim, Hyoung-Joo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relational database (RDB) to resource description framework (RDF) transformation is a major semantic information extraction method because most web data are managed by RDBs. Existing automatic RDB-to-RDF transformation methods generate RDF data without losing the semantics of original relational data. However, two major problems have been observed during the mapping of multi-column key constraints: repetitive data generation and semantic information loss. In this article, we propose an improved RDB-to-RDF transformation method that ensures mapping without the aforementioned problems. Optimised rules are defined to generate an accurate semantic data structure for a multi-column key constraint and to reduce repetitive constraint data. Experimental results show that the proposed method achieves better accuracy in transforming multi-column key constraints and generates compact semantic results without repetitive data.
ISSN:0165-5515
1741-6485
DOI:10.1177/0165551520920804