Quantitative Immunohistochemistry of Glucose Transport Protein (Glut3) Expression in the Rat Hippocampus During Aging

Immunohistochemistry of Glut3 (45 kD), an integral membrane peptide mediating the transport of glucose in neurons, was carried out in the hippocampus of 3- and 28-month-old rats to assess the effect of age on energy metabolism. Free-floating sections of fixed-frozen hippocampi were processed for qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of histochemistry and cytochemistry 2001-05, Vol.49 (5), p.671-672
Hauptverfasser: Fattoretti, Patrizia, Bertoni-Freddari, Carlo, Di Stefano, Giuseppina, Casoli, Tiziana, Gracciotti, Natascia, Solazzi, Moreno, Pompei, Pierluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunohistochemistry of Glut3 (45 kD), an integral membrane peptide mediating the transport of glucose in neurons, was carried out in the hippocampus of 3- and 28-month-old rats to assess the effect of age on energy metabolism. Free-floating sections of fixed-frozen hippocampi were processed for quantitative immunohistochemistry of Glut3. A rabbit affinity-purified antibody identified Glut3 immunoreactivity. Glut3 staining was intense in neuropil, axons, and dendrites, whereas nerve cell bodies were unstained. With aging, Glut3 reactivity was significantly decreased in the inner molecular layer of the hip-pocampal dentate gyrus (–46%) and the mossy fibers of the CA3 sector (–34%), whereas the stratum radiatum of CA1 did not show any difference due to age. These data document an age-dependent decrease in Glut3 expression in discrete areas of rat hippocampus. Glut3 constitutes the predominant glucose transporter in neurons and is found abundantly in regions with high synaptic density characterized by frequent bursts of function-adequate metabolic activity. Our findings therefore lend further support to the critical role of an impaired metabolism in age-related brain dysfunctions and disease. (J Histochem Cytochem 49:671–672, 2001)
ISSN:0022-1554
1551-5044
DOI:10.1177/002215540104900518