Liquid crystal elastomer composite-based photo-oscillator for microrobots
In recent years, photoactive materials have attracted extensive interest in microrobots for their attractive abilities of untethered and tunable control with light. Conventional photo-oscillators based on Azo-containing liquid crystal network require complex surface alignment techniques and light so...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2023-02, Vol.57 (4), p.633-643 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, photoactive materials have attracted extensive interest in microrobots for their attractive abilities of untethered and tunable control with light. Conventional photo-oscillators based on Azo-containing liquid crystal network require complex surface alignment techniques and light sources with specific wavelengths and polarity, which limits their application in controlled autonomy. Here, we report a facile strategy to create self-oscillating microrobots powered and controlled by a wide spectrum of constant light. The oscillators are composed of a layer of candle soot (CS)-containing liquid crystal elastomer (LCE) attached to a layer of polydimethylsiloxane (PDMS). The strip-shaped oscillators with one end fixed can execute self-sustained oscillation through a self-shadowing mechanism. LCEs with CS as an excellent photo-absorber provides superior photothermal actuation, while PDMS with low viscoelasticity accelerates the actuation-recovery cycle of the oscillator. Our LCE composite photo-oscillators show tunable frequencies and amplitudes by structural and light intensity modulation, showing potential for autonomous soft robotic applications. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/00219983221146618 |