Effect of freeze and thaw cycle on the mechanical properties of engineered cementitious composites with un-oiled fibers containing liquid and solid polymers

Nowadays, the application of the engineered cementitious composites(ECC) is expected to highly develop. Due to the lack of access to oiled- polyvinyl alcohol (PVA) fibers in many parts of the world, the implementation of the ECC has contained many difficulties. In this study, to increase the mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 2022-03, Vol.56 (6), p.837-847
Hauptverfasser: Azadmanesh, Hadi, Hashemi, Seyed Amir Hossein, Ghasemi, Seyed Hooman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, the application of the engineered cementitious composites(ECC) is expected to highly develop. Due to the lack of access to oiled- polyvinyl alcohol (PVA) fibers in many parts of the world, the implementation of the ECC has contained many difficulties. In this study, to increase the mechanical properties of ECC with the use of un-oiled PVA fibers, the polymers of styrene butadiene rubber (SBR), and ethylene vinyl acetate (EVA) were taken into account to resolve the abovementioned issue. Herein, also in order to enhance the tensile and flexural properties of ECC, the cement was replaced by polymers. Accordingly, a total of 7 mix designs were planned to conduct the proposed tests. The compressive strength, uniaxial tensile strength, and three-point bending tests were performed on the ECC at their 28-day age with consideration of the freeze and thaw cycle. The results of this research illustrated that the use of polymers can enhance the tensile and flexural properties of the ECC with un-oiled PVA fibers. The tensile strain in this study increased by more than 3% after the application of the polymers. Furthermore, the compressive strength increased by more than 47 MPa, and the deflection at the mid-span reached more than 9 mm in the bending test. However, the results showed that the use of polymers was effective on the freeze and thaw cycle and almost preserved the mechanical properties of the ECC. SBR latex has higher compatibility with the ECC in comparison with EVA powder.
ISSN:0021-9983
1530-793X
DOI:10.1177/00219983211038623