Investigation of the penetration behavior of silicon dioxide epoxy hybrid nanocomposites
The use of nanomaterials is gradually increasing with the progress of nanotechnology. In particular, the production of nanocomposites incorporating nanoparticles is one of the most significant areas in which nanomaterials are being used increasingly. The first objective of this research was to detec...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2021-05, Vol.55 (11), p.1535-1545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of nanomaterials is gradually increasing with the progress of nanotechnology. In particular, the production of nanocomposites incorporating nanoparticles is one of the most significant areas in which nanomaterials are being used increasingly. The first objective of this research was to detect the punch shear or penetration resistance behavior and damage mechanisms of hybrid nanocomposites obtained by using silica (SiO2) nanoparticles. For that purpose, six different SiO2 hybrid nanocomposites with different laminations three layer (3La), 5La, 7La, 11La, 15La and 21La and different thicknesses (HC) of 0.95∼4.98 mm, were made by using vacuum assisted transfer molding (VARTM). During this research, quasi-static punch-shear (QS-PS) tests at span punch ratios (SPRs) of 1.16, 1.33, 1.67, 2.00, 2.33, 2.67, and more were conducted to determine quasi-static penetration mechanics and penetration resistance behavior. Moreover, deflection, energy dissipation, damage area, stiffness, and peak force values were investigated through experimental results and scanning electronic microscope (SEM) images. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998320973746 |