High thermally conductive epoxy composite inks cured by infrared laser irradiation for two-dimensional/three-dimensional printing technology
We propose a new fabrication method of high thermally conductive epoxy composites for 3 D printing technology, which is based on a thermosetting epoxy system containing graphene nanoplate (GNP) as an IR-absorbing material. Firstly, we developed highly heat-dissipating inks based on bisphenol A digly...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2020-12, Vol.54 (29), p.4635-4643 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new fabrication method of high thermally conductive epoxy composites for 3 D printing technology, which is based on a thermosetting epoxy system containing graphene nanoplate (GNP) as an IR-absorbing material. Firstly, we developed highly heat-dissipating inks based on bisphenol A diglycidyl ether (DGEBA) type epoxy resins containing graphene nanoplate (GNP) which was used as a heat dissipating filler and, simultaneously, an IR-absorbing material for heat induced rapid curing of printed layer. h-BN was also added as a heat dissipating filler in order to increase the thermal conductivity and to decrease the electrical conductivity of the composite. Secondly, by using a micro dispenser equipped with an IR laser, 2D/3D line patterns of thermally conductive epoxy composites were printed and cured in-situ. Thermal and electrical conductivities of the resulting composites were discussed with respect to the resin compositions and the irradiation conditions. The highest thermal conductivity of 2.77 W/m·K was achieved when the contents of GNP and h-BN were 15.0 and 20.0 phr, respectively. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998320935154 |